
2016년 추계학술발표대회 논문집 제23권 제2호(2016. 11)

, , ,

,
e-mail : kyungbaekkim@jnu.ac.kr

Design and Implementation of Big Data Platform for Image Processing in Agriculture

Van-Quyet Nguyen, Sinh Ngoc Nguyen, Duc Tiep Vu, Kyungbaek Kim
Dept. of Electronics and Computer Engineering, Chonnam National University

Image processing techniques play an increasingly important role in many aspects of our daily life. For
example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting
or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as
remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image
processing systems are designed for small-scale and local computation, and they do not scale well to handle big
data problems with their large requirements for computational resources and storage. In this paper, we have
proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support
large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation
model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which
are frequently used in image processing. In our experiment, we show that our platform outperforms traditional
system in a scenario of image segmentation.

1. Introduction
There are many applications of image processing in

agriculture such as plant pest detection and fruit grading [1].
The image processing techniques can be used to enhance
agricultural practices, by improving accuracy and consistency

Often, it offers flexibility and effectively substitutes the
In recent years, however,

with the rapid growth of agriculture, a large amount of image
data has been accumulating from greenhouses. When
processing this massive data resource has been limited to
single computers, computational power, and storage ability
quickly become bottlenecks. Alternately, processing tasks can
typically be performed on a distributed system by dividing the
task into several subtasks. The ability to parallelize tasks
allows for scalable, efficient execution of resource-intensive
applications.

Recently, there are several researchers focused on
Hadoop/MapReduce [2] platform which provides a system for
computationally intensive data processing and distributed
storage. There are three main frameworks that designed for
image processing in Hadoop: HIPI (Hadoop Image
Processing Interface) [3], OpenIMAJ (Open Intelligent
Multimedia Analysis for Java) [4], and MIPr (Mapreduce
Image Processing) [5]. HIPI is a framework that is
specifically designed to enable image processing in Hadoop.
OpenIMAJ is a set of Java libraries for image and video
analysis, some of OpenIMAJ tools have Hadoop
implementation. The MIPr framework provides the image
representations in the internal Hadoop formats, the
input/output tools for image processing integration into
Hadoop data workflow, and the image processing API for
developers who are not familiar with Hadoop. However,
these frameworks are required to modify the image storage
such as HIP files in HIPI framework, which creates additional

overhead in programming. In our work, we get automatically
the images from the remote sensors and store them in HDFS,
in which there is no additional programming overhead for
users to handle image storage.

In this paper, we have developed a Hadoop-based system
with the aims of providing IPABigData platform specific
enough to contain a relevant framework applicable for image
processing in agriculture. We use Hadoop because this
framework is designed to store and process big data on large-
scale distributed systems with simplified parallel
programming models.

Our work makes the following contributions:

 First, we proposed a new design of big data platform
for image processing by using Hadoop. The platform
provides the modules for processing the image data.

 Second, we implemented algorithms in MapReduce
for image processing which are used to interpret the
image content such as image grayscale and image
segmentation, in parallel.

 Final, the experimental results showed that processing
big image dataset of our platform is faster than a
traditional system. The results also show the viability
of application of our system in agricultural data.

2. Background

2.1. Image Processing Algorithms

 We consider implementation of multiple variations of
widely-used current image processing algorithms which are
essential for data analysis in agriculture such as plant pest
detection and fruit grading.

1) Image Histogram

- 50 -

2016년 추계학술발표대회 논문집 제23권 제2호(2016. 11)

A histogram is an array of numbers in which each
element, bin, corresponding to the frequency of a range of
values in the given data [6]. For instance, each bin counts the
number of pixels having the same color values in the case of
an image histogram. Thus, a histogram is a mapping from the
set of data values to the set of non-negative real numbers.

2) Image Segmentation using Ots method

Image segmentation is the process of partitioning
a digital image into multiple segments (sets of pixels).
Each of the pixels in a region is similar with respect to some
characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with
respect to the same characteristics.

Ots method is used to automatically perform
clustering-based image thresholding or the reduction of a
gray level image to a binary image [7]. The idea of Ots
method is to find out a threshold which maximizes the
between-class variance. This idea can be represented by the
algorithm as follows.

Step 1: Compute histogram and probabilities of each
intensity level

Step 2: Set up initial class probability and class mean
with threshold t = 0

Step 3: Loop through all possible thresholds from t = 1 to
maximum intensity

-Update and , and compute class variance

Step 4: Get threshold corresponding to the maximum

2.2. Hadoop/MapReduce

 Hadoop consists of two components of HDFS and
MapReduce, which are respectively the implement of

. MapReduce is a
programming model that supports to run programs in parallel
on large distributed system. This model uses a map function
that processes a key/value to generate a set of intermediate
key/value pair and a reduce function that gathers all values
with the same intermediate key to process and returns the
results. A MapReduce program is automatically parallelized
and executed on a large cluster of commodity machines. A
MapReduce job usually splits the input dataset into
independent chunks that are processed by map tasks. The
outputs of map tasks are sorted, then they are used as inputs
to reduce tasks. Typically, both of input and output of a
MapReduce job are stored in the HDFS. The job is finished
when all map tasks and reduce tasks are completed.

2.3. Image Processing and Hadoop
 In this section, we present how to apply
Hadoop/MapReduce for image processing through an
example in which the image histogram calculation is
performed in parallel and distributed manner. In this example,
we consider to 5x5 pixel of a grayscale image as shown in
Figure 1.

 The original image has three intensity levels in histogram
including i1, i2, i3. To calculate the histogram for this image
using MapReduce, the original image is spliced into sub-

images and store on HDFS. In this case, we have five sub-
image from FileSplit1 to FileSplit5. Then, we perform three
steps as shown in Figure 2.

Figure 1. A 5x5 pixel grayscale image

Figure 2. Image histogram calculation using MapReduce

Step 1: Each file is read, then calculate the intensities by Map
Task. The input for each Map Task is a pair (key, value), in
which key is identified by file name and value is the content
of sub-image. The output of Map function is the list of

, in which is the intensity level and is
the number of pixels corresponds to the intensity level .

Step 2: It collects all of pairs of Map tasks, then
sort and shuffle by value. The pairs with the same
usually are gathered belong to a group which will be
processed by the same Reduce Tasks.

Step 3: In the reduce phase, the input is the output of the
combiner in Step 2, each Reduce Task has a different key. In
this example, the key for each reduce task is chosen
corresponds to each intensity level in the image. This phase
performs a calculation total of pixels for each intensity level.
By assembling the output of each reduce task, we can get the
final result that is a histogram of the original image.

3. Design and Implementation of IPABigData Platform

3.1. The Architecture of IPABigData platform
Our goal is to build a Big Data platform for plant pest

detecting. The platform is designed to run on Hadoop
environment. The IPABigData overall architecture includes
three mains layers as shown in Figure 3. The lowest layer as
the infrastructure layer that includes multi-cluster (nodes) to
build a Hadoop-based system for storing and processing data.
The second layer, Image Processing Algorithms, provides the
algorithms that apply well-known techniques for image
processing such as histogram calculation, and image
segmentations. This layer includes three components: Low-

- 51 -

2016년 추계학술발표대회 논문집 제23권 제2호(2016. 11)

level Image Processing, High-level Image Processing, and
Image Data Analysis. The third layer is a Decision Making
Support System, which provides some suggestions to user for
find out some plant pests or fruit grading based the
information of Image Data Analysis in the second layer.

Figure 3. The architecture of IPABigData platform.

3.2. Implementation of Input Format
In Hadoop, the input data need to be processed by

InputFormat class at first and then pass to each mapper
through the standard input. The InputFormat class in Hadoop
is used to handle input data for Map/reduce job, which need
to be customized for different data formats. The InputFormat
class describes the input data format and define how to split
the input data into InputSplits buffer, which will be sent to
each mapper. Another class, RecordReader, is called by
mapper to read data from each InputSplit.

For image processing in Hadoop, we implement
ImageFileInputFormat class to extend FileInputFormat
class in Hadoop, which returns false in isSplitable and
creates ImageFileRecordReader class instance in get
RecordReader. ImageFileRecordReader will create
Key/Value pair for mapper and read the whole content of
input image file actually.

3.3. Implementation of Output Format

 The OutputFormat interface determines how the results
of a MapReduce job are stored. In Hadoop framework, there
are several classes and interfaces with different types of
formats, and customization is done by extending one of these.
The default class of OutputFormat is TextOutputFormat in
which the lines are separated and a tab character is used to
separate the key/value pair. In this paper, after processing
data, the results are image files, because of that we have
implemented an ImageFileOutputFormat class extends
FileOutputFormat class.

3.4. Implementation of Image Processing Algorithms
In our platform, image processing operations can be

divided into two levels including low-level image processing
and high-level image processing.

1) Low-level Image Processing Algorithms
The low level is also called image pre-processing that

operates at the pixel level [8]. The input to low-level image
processing operators is an image whereas the output is either
image or data. Few examples of low-level image processing
operators are contrasted enhancement, noise reduction, and
noise removal in an image. They are also used for edge
detection and various image transformations or calculation of
simple characteristics such as contours histograms.

2) High-level Image Processing Algorithms
The high-level image processing operations operate in

order to generate higher abstractions [9]. They work on
abstractions derived from intermediate-level image
processing operators. They are used to interpret the image
content such as classification and object recognition.

4. Evaluation

4.1. Evaluation Settings
The settings for experiments used to execute algorithms in

this paper are described as following.

Environment setting. We deploy our framework with
five machines: one machine for master node, and four others
for compute nodes. Each compute node has 4 physical CPU
cores and 8GB of RAM. All algorithms are implemented in
Java.

Image Dataset. Our experiment uses the data related to
crop/weed images which are collected from the Internet. To
show the performance of our platform with big image data,
we prepare multiple dataset of images with a different number
of images and volume as Table 1.

Table 1. The various size of image dataset

Number of
images

Volume
(MB)

100 153
200 301
400 590
600 891
800 1229

4.2. Evaluation Results
In this section, we present experimental results of using

our platform for image segmentation of agriculture image
dataset as described above. For image segmentation, in our
platform, we implemented (1) an algorithm for converting the
color image to grayscale image and (2) Ots algorithm for
the binarizing image, which are in Low-level Image
Processing module. We also implemented a program in Java
which conducts the same algorithms in a single machine, and
we named using this program as Local-based approach
through this evaluation. Then, we run the experiment and get
the results as shown in Figure 4.

- 52 -

2016년 추계학술발표대회 논문집 제23권 제2호(2016. 11)

Figure 4. Comparison of execution time between IPABigData
platform based on Hadoop (24 CPU cores) and a Local-based
approach.

Figure 5. Efficient of increasing number of CPU cores on
IPABigData platform based on Hadoop

Figure 4 shows the results of execution time in the
experiment. With a small image dataset (100 images), the
execution time of Local-based approach is smaller than our
platform. Because the system with Hadoop needs to
read/write the data at the initial state of the whole process, so
it spends more time to setup the process. However, with a
large image data set more than 400 images, our IPABigData
platform executes faster than the Local-based approach. It
shows that our platform is more scalable in aspects of the
volume of input datasets.

To evaluate the efficiency and scalability, we varied the
number of CPU cores of our system for conducting map
tasks and reduce tasks from 8 to 32. In this experiment, we
ran our platform for image segmentation algorithm with 400
images. We observed that the execution time decreases
dynamically when we increase the number of CPU, as shown
in Figure 5. The execution time with 8 CPU cores takes more
1000 seconds; meanwhile, the execution time with 32 CPU
cores decreases down to 229 seconds. That is, our platform is
much more efficient and scalable than the Local-based
approach in the aspects of processing power.

5. Conclusion
The massive quantities of images generated in real-time

through multi-devices during monitoring of plant growth in
agriculture leads to the challenges of big data. In this paper,
we have proposed a Hadoop based IPABigData platform and
implemented map/reduce compatible algorithms to support
large-scale image processing in agriculture. Our experiment
showed that IPABigData platform outperforms traditional
local computing based approach in the aspects of execution
time of conducting image segmentation of large image data
set. In future works, we will focus on improving the
performance of our proposed platform, and provide more
algorithms for image processing in agriculture.

Acknowledgment
This work was carried out with the support of

"Cooperative Research Program for Agriculture Science and
Technology Development (Project No. PJ01182302)" Rural
Development Administration, Republic of Korea. This
research was supported by the MSIP(Ministry of Science, ICT
and Future Planning), Korea, under the ITRC(Information
Technology Research Center) support program (IITP-2016-
R2718-16-0011) supervised by the IITP(Institute for
Information & communications Technology Promotion).

References

[1] Vibhute, Anup, and S. K. Bodhe. "Applications of image
processing in agriculture: a survey." International
Journal of Computer Applications 52.2 (2012).

[2] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
simplified data processing on large
clusters." Communications of the ACM 51.1 (2008):
107-113.

[3] Sweeney, Chris, et al. "HIPI: a Hadoop image
processing interface for image-based mapreduce
tasks." Chris. University of Virginia (2011).

[4] Hare, Jonathon S., Sina Samangooei, and David P.
Dupplaw. "OpenIMAJ and ImageTerrier: Java libraries
and tools for scalable multimedia analysis and indexing
of images." Proceedings of the 19th ACM international
conference on Multimedia. ACM, 2011.

[5] Sozykin, Andrey, and Timofei Epanchintsev. "MIPr-a
framework for distributed image processing using
Hadoop." Application of Information and
Communication Technologies (AICT), 2015 9th
International Conference on. IEEE, 2015.

[6] Ahmed, Khidir Elhadi Bala, Rania A. Mokhtar, and
Rashid A. Saeed. "A new method for fast image
Histogram calculation." Computing, Control,
Networking, Electronics and Embedded Systems
Engineering (ICCNEEE), 2015 International Conference
on. IEEE, 2015.

[7] Otsu, Nobuyuki. "A threshold selection method from
gray-level histograms."Automatica 11.285-296 (1975):
23-27.

[8] Nicolescu, Cristina, and Pieter Jonker. "Parallel low-
level image processing on a distributed-memory
system." International Parallel and Distributed
Processing Symposium. Springer Berlin Heidelberg,
2000.

[9] Bräunl, Thomas, et al. Parallel image processing.
Springer Science & Business Media, 2013.

- 53 -

	T.O.C
	C2-병렬 및 분산컴퓨팅.pdf
	017.	농업 이미지 처리를 위한 빅데이터플랫폼 설계 및 구현 KIPS_C2016B0188

